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Pattern selection and the effect of group velocity on interacting oscillatory
and stationary instabilities

D. Walgraeft
Departament de Bica, Universitat de les llles Balears, E-07071 Palma de Mallorca, Spain
(Received 29 August 1996

The effect of mean flows on pattern stability in systems where oscillatory instabilities of the Hopf type
interact with stationary ones is investigated. In particular, it is shown that pattern selection may be strongly
modified when the absolute instability threshold of the trivial uniform steady state is rejected beyond the
stationary instability. The effect of spatially distributed noise including the competition between noise sus-
tained and dynamically sustained structures is also discugS&863-651X97)01006-4

PACS numbes): 47.20.Ky, 05.40+], 43.50+y, 47.50+d

I. INTRODUCTION tions grow at any fixed locatiof8]. As a result, the behavior
of the system is qualitatively very different in both regimes.
Several physicochemical systems driven out of equilib4n the convectively unstable regime, a deterministic system
rium present oscillatory instabilities or Hopf bifurcations cannot develop the expected wave patterns, except in par-
leading to the formation of spatiotemporal wave patternsticular experimental setup@.g., in annular containers or in
Celebrated examples are RayleighaBed instabilities in bi-  the presence of reflecting boundalieshile in a stochastic
nary fluids[1], electrohydrodynamic instabilities in nematic System noise is spatially amplified and gives rise to noise-
liquid crystals [2], or convective instabilites in Taylor- Sustained structurg®]. On the contrary, in the absolutely
Couette system§3]. Close to the instability, the systems unstable regime, waves are intrinsically sustained by the de-

dynamics may be reduced, in one-dimensional geometries, Itgrministic dynamics, which provides the relevant selection

coupled complex Ginzburg-Landau equations that describgnd stability criterig 10,11. Hence the concepts of convec-

the evolution of the amplitude of counterpropagating Wave%\éiai?gr z?f‘zlr?ltiﬁégrsﬁg\'llgy Ztrtee risssaegctilztiééﬁ :tgﬁéts;%nd the
that may appear beyond the bifurcation pdit. The coef- b '

ficients of th i h b luated b Noise-sustained wave patterns have been widely studied,
icients of these equations have been evalualed by means ﬁ)IISt, in systems where single or counterpropagating traveling
analytical and numerical techniques for binary fluid convec-

: : ) X waves are preferred and, more recently, in systems where it
tion _for different separation ratlos_, Prgndtl numb_ers, anqS standing waves that are the preferred struct8ek3—18.
Lewis numberg5] and for polymeric fluid convection for |, harticular, in the latter case, it has been shown that in
different fluid characteristic§6]. From the values of these geterministic systems transitions from the conduction state to
kinetic coefficients of these equations, which have been de:raveling waves and finally to standing waves occur at
rived directly from the Navier-Stokes equations, it appearghresholds that depend on the group velocity, while in sto-
that in binary fluid convection the selected pattern shoulcthastic systems standing waves are sustained by noise in all
correspond to traveling waves, while in viscoelastic convecthe parameter range beyond the Hopf bifurcafib8l.
tion there is a wide range of parameters where the selected Besides the oscillatory instabilities, many of these sys-
stable patterns should correspond to standing waves. Furthaems also present stationary instabilities leading to steady
more, in the latter case, the amplitude and phase stability ofpatial patterns. Which type of convection appears first, os-
these standing waves versus extended perturbations hag#latory or stationary, is determined, in polymeric fluids, by
been computed for a series of typical values of the paramtheir rheological parameters. In particular, at fixed Prandtl
eters corresponding to polymeric solutions ranging from Jefnumbers, it is the stress relaxation time that fixes the relative
freys to Maxwellian[7]. position of each instability threshold. Hence, in the case
However, these Ginzburg-Landau equations contain meawhere oscillatory instability appears first, the corresponding
flow terms induced by group velocities whose importanceabsolute instability may nevertheless be rejected beyond the
varies according to the fluid under consideration. As a resultstationary instability if the group velocity is sufficiently
one also has to study the convective and absolute stability darge, such as in Maxwell fluids. In this case, the difference
the wave patterns. Let me recall that when the reference stddetween deterministic and stochastic systems should be
is convectively unstable, localized perturbations are driverqualitative in nature. Effectively, in deterministic systems,
by the mean flow in such a way that they grow in the movingstationary patterns should develop first, even though the
reference frame, but decay at any fixed location. On the corHopf bifurcation is the first to appear, while in stochastic
trary, in the absolute instability regime, localized perturba-systems, standing waves should be sustained by noise in be-
yond the Hopf bifurcation.
To describe this situation, one needs to consider coupled
*Permanent address: Center for Nonlinear Phenomena and Coramplitude equations for interacting oscillatory and steady
plex Systems, Free University of Brussels, Case Postale 231, Bounodes. The aim of this paper is to achieve a qualitative un-
levard du Triomphe, B-1050 Brussels, Belgium. derstanding of the behavior of such dynamical systems for
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arbitrary values of the cross-coupling coefficients and of thas now well known that it is the nonlinear cross-coupling
group velocity and to analyze the effect of these parametererm between both amplitudes that determines if the stable
on the pattern selection, either in deterministic and stochastipatterns correspond to travelingtrong cross-couplingor
systems. standing(weak cross-couplingwaves. Their generalization

The paper is organized as follows. In Sec. Il, amplitudeto the codimension-two problem has been studied in the
equations for interacting oscillatory and stationary modes arécamework of Rayleigh-Beard convection in binary fluids
presented in the general case. In Sec. lll, convective anfP3,5], where the bifurcation parameter is the Rayleigh num-
absolute instability thresholds are determined for the differber and the wave cross-coupling temmis larger than one
ent ground states when the cross coupling between countesnd favors traveling waves. Up to now, they have not been
propagating waves sustains traveling waves or standingtudied for low wave cross couplingg€1), which favor
waves. The resulting pattern selection is analyzed for detesstanding waves. This is the case of viscoelastic convection,
ministic systems in Sec. IV and for stochastic systems irwhere the amplitude equations have been calculated for non-
Sec. V. Numerical checks are presented in Sec. VI and corninteracting oscillatory and stationary instabilities orfly].

clusions are drawn in Sec. VII. Hence the coefficientsi(1+iv) and w(1+if) are not
known yet. | will nevertheless study these equations for

Il. AMPLITUDE EQUATIONS FOR INTERACTING vy<1 and arbitrary cross-coupling coefficientEl +i») and
OSCILLATORY AND STATIONARY INSTABILITIES w(1l+i¢) in order to assess the possible behavior of the

solutions of these equations. The application of the results to

Let me consider a driven physicochemical system wherg;iscoelastic convection should improve the qualitative un-
an oscillatory instability, say, a Hopf bifurcation with broken derstanding of pattern formation in polymeric solutions and

spatial symmetry, and a stationary pattern forming instability,\ide useful hints for the interpretation of experimental
are close together. In their vicinity, the order-parameter-l|keresu|ts[24]_

variable may be written, in one-dimensional horizontal ge-

ometries, as lIl. STABILITY OF THE GROUND STATES
U(r,t)=[Uo(2) (A(X,T)e' kext o) 1 B(X, T)e ™ (kex~wct)) In order to determine the patterns that may be selected by
- o the dynamics(2.2), one has to analyze the stability of the
+us(z2)R(X, T)e"o +c.c], (2.1 different steady-state solutions and, in the first place, of the

trivial conduction state. Since Eg&..2) correspond to super-
critical bifurcations and thus to stabilizing nonlinearities, this
study may be performed through a linear stability analysis.

wherek. and k, are the critical wave numbers associated
with each instability. The amplitude&(X,T), B(X,T), and
R(X,T) depend on the slow variableX=¢e"* and
T=e¢"1t, wheree is the reduced distance to one of the in-
stability thresholds, say, the Hopf instability threshold
[e=(r—ry)/ry, wherer is the bifurcation parameter and  On linearizing Egs.(2.2) around the trivial solution
ry, its critical value at the Hopf bifurcatignThe structure of A(X,T)=B(X,T)=R(X,T)=0, the complex growth rates of
their evolution equations may easily be obtained on using thdisturbances of wave number satisfy the dispersion rela-
symmetries of the problem and correspond to the coupletions
Ginzburg-Landau equations

A. Stability of the conduction state

wpa=KV+e+(1+ia)K?,
TA=VaxA+ eA+(1+ia)diA—(1+iB)|A|A
T X X AIIA wg=—KV+et+(1+ia)K2, K=k+iq
—y(1+i6)|B]?’A—u(1+iv)|R|?A,
1
_ 2102
9rB=—VixB+eB+(1+ia) 3B~ (1+iB)|B|?B wr="[(e~ &)+ {K] @D
H 2 H 2
—y(1+i9)|A*B-u(1+iv)[R|B, and the growth rates of such perturbations are given by
B 9.2 ) Rew(K). Using the method of steepest descent, the long-
701R= (€~ €9)R+ £50xR—[R|°R time behavior of the system along a ray defined by fixed
—w(1+i0)(|A]2+|B|?)R, (2.2) X/T, i.e., in a frame moving with a velocity/,=XI/T, is
governed by the saddle point defined by

o | (dw)
= y m —_—
K dK

wherees=(rs—ry,)/ry, is positive when the oscillatory insta- q
bility is the first to appear on increasing the bifurcation pa- Re( _“’)
rameter, which is the case we will consider hefgis related dK
to dispersive effectsy and & are the cross-coupling coeffi-
cients between oscillatory modéswill consider —1<y in Since absolute instability occurs when perturbations grow
order to ensure supercritical bifurcations, v, w, and are  at fixed locations, one has to consider the growth rate of
the cross-coupling coefficients between oscillatory andmodes evolving with zero group velocity, which are defined
steady modes. by

The evolution equations for the amplitudesandB in the
absence of interactions with stationary modes have been de- e(d_“’) _ |m<d_“’) -0
rived and studied in different context,19—21,13,2Pand it dK dK '

~V,. 3.2
Ko

(3.3
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These conditions define the wave number stability when 1 a8 is negative[26,27]. In the following,
we will consider systems whera and 8 are sufficiently
ok kom0 ke \ small and positive such thattla3>0.
Gae)= =~ @a@)» GRTKRTE: Ka®)= 515 ,7) The only remaining instability mechanism may then result

(3.4  from the growth ofB. Effectively, the linearized evolution

i , equations fotb or b give the growth rate
The real part ofw, which determines the growth rate of

these modes, is then wg=€(l—y)—ieyd—Kv+(1+ia)K? (3.9

_ _ % As in Sec. Ill A, the condition$3.3) and(3.4) determine
)\A(B)_waA(B))_G_“—Zr . ) . )
(1+a9) K. The stability of the solutior \eexp—i(BeT+¢),0,0] is
determined by the growth rates;=Re(w;) (j=A,B,R).
Ar=Re(wg) =€~ €. (3.5  Since w, is negative, we get the following condition for

- . . absolute stability of the pure traveling-wave states:
Therefore, the trivial conduction state is absolutely unstable

if A>0. As already shown if@], this condition determines a V4
critical line in the parameter space, which can be expressed Ag=Rewg)=€(1—-7y)— m<0,
for the group velocityv or the control parameter as

, VZ )\R: RawR)ZE(l_W)_65<O. (39)
V=2Ve(l+a“) or e=77——>. (3.6
¢ ¢ 4(1+ad) Hence, fory>1 andw>1, pure traveling waves are stable,

_ . . while they may become unstable fgrx1 and/orw<<1. For
Hence, for G<e<e., the conduction state is convectively ,, 1 traveling waves are stable forQ< e /(1—w) and
unstable towards wavy modes and wave patterns are Unab(l)%cor,ne unstable versus spatial r;odulations for

to develop in the absence_ of noise. Fof €., wave patterr_ls e>e /(1—w). For —1<y<1, one has to distinguish be-
may grow and are sustained by the dynamics, even in thgeen the following cases.

absence of noise. On the other hand, fer &< €, the con- (i) w>1. Stationary spatial modulations decay and pure
duction state is stable versus stationary modes and U”Statﬂ%\veling waves are thus convectively unstable, but abso-

for e;<e. Hence, fore> e and e> € both types of modes el stable versus counterpropagating wavy modes for
may start growing, but it is of course their nonlinear interac-q - ;- ./ — . /(1) and absolutely unstable foe'<e
Cc Cc Cc 1

tions that will determine the resulting patterns and their sta- . - NN A
bility. Let me then consider the different possibilities, which The correspon(jmg cr|t_|cal group velo_cny\#t VeVl -V

. As a result, on increasing the bifurcation parameter in deter-
are pure wave patterns, pure roll patterns, and mixed states.

involving rolls and wave patterns. | will consider here uni- mm'St'tC ds;;stem<s Vl'th, &= 1h travc_ehnr;c)j \f/vi\;esHshouId be
form amplitude solutions corresponding to spatiotemporafXPected foreg<e<e, as shown in Ref[18]. However,

patterns with critical wave numbers. The stability of modu-Wheny=0, whichis the case in viscoelastic convectiéi
lated or wave solutions will be considered later on. e.<€c. Hence, in deterministic dynamics, a traveling-wave
state cannot be obtained, in ramp experiments, from the

trivial conduction state.
(i) w<1. The absolute and convective stability properties
1. Traveling waves of pure traveling waves versus counterpropagating wavy

One class of nontrivial steady states of the dynamical sysr-nOOIeS remain unchanged, but they are unstable versus

tem (2.2) corresponds pure critical traveling-wave solutionsStationary spatial modulations far> 65/(1._ w). Pure trav-
AX,T)o= Jeexp—i(BeT+d), B(X,T)=R(X,T)=0 or ehng_ wa}ves are thus only convectively unstable for
Bo(X,T) = Veexp—i(BeT+ ), AX.T)=R(X.T)=0, where e<min[e;, es/(1—w)]. Hence, for G<y<1, they may

¢ is an arbitrary phase. One may consider the first familyonly. b? expected when €c=€s/(1-w) 'for €c=€
without loss of generality and, in order to study its Iinear<m'_n[60’65/(1_w)].’ .wh|le for 7.<0’ they still cannot be
stability, one has to look for solutions in the form ©OPtained from the trivial conduction state.
A(X,T)=(Je+a)exp—iBeT, B(X,T)=b and compute the
eigenvalues of the linearized evolution equations doib,
and their complex conjugatesandb . The real parts of the A second class of nontrivial steady states of the dynami-
eigenvalues of the Fourier transform afare well known Cal system(2.2) corresponds to the pure critical standing-

B. Stability of pure wave patterns

2. Stability of standing waves

(see, for exampld25]) and read wave  solutions Ay(X,T)=e/(1+ y)exp—i[(B+yd)/
(1+v)eT+ ¢], B(X,T)= Vel (1+ y)exp—i[(B+yd)/
Rew|y=—2e—(1-aB)g’+- -, (1+y)eT+ 4], and R(X,T)=0, where¢ and ¢ are arbi-

trary phases. Foy>1, standing waves are known to be
a®(1+ %) 4 unstable. Fory<<1, standing waves are stable versus pertur-
3¢ 4t - 37 pations inA and B, provided I+ a(8— y28)/(1— y2)>0

[19] (which reduces to the habitual Benjamin-Feir criterion
The first one is always negative, but the second may becomk+ «8>0 in the special case whee= 8 [28]). | will con-
positive and the system may experience a Benjamin-Feir insider here that these conditions are satisfied, as it is usually

Rew,=—(1+aB)q*—
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the case for convection in Oldroy&l-viscoelastic fluidg7], 1. Mixed traveling waves and roll states
which is a typical example of system wheyeZ1. Note that

_ ) - These states are asymptotic solutions of the equations
the results obtained below are also valid for noncritical

standing-wave solutions in their phase stability domie ITA=VixA+ eA+(1+ia)dxA—(1+iB)|AI2A
phase stability condition being derived [idi]). Outside this

domain, one needs to study the convective absolute stability —u(1+iv)|R|?A,

of the corresponding patterns, an aspect that will be analyzed

later on. For the time being, let us consider only critical r9tR=(e— e R+ £505R—|R|’R

standing waves that are stable versus wavy mode perturba- )

tions. —w(1+i)|AIR, (3.15

The full stability analysis also requires one to study the

growth rate of spatial disturbances R around the state with B=0 (or t_he symmetric stgtes whereand B are ex-
(A..Bs,0), which is given by changegl Their uniform solutions may be written as
S Sy il

A=|A,|e' %A, andR=|R,|e'r. and satisfy

— €. (3.10 e—|Anl*—U|Ry|*=0,

Ar=R =€l 1 2w
r=Re(wg)=¢€ T1ry

. . . 6_5S_|Rm|2_W|Am|2:0a
In these conditions, critical standing waves are thus stable
for any >0 if 2w>1+y and for O<e = —(B|A2+ uv|R, D)t
<ef(1+79)/(1+y—2w)] if 2w<1+1y. P2, =~ (BlAnl [Ro

=—w¢|A %t (3.1
C. Stability of steady rolls ¢Rm §| m|
The linear growth rates of the wavy mode perturbationsAs a result, one has

around the pure critical roll stat@,0Ry= e — e;exp ¢) that

may exist fore— e are given by , €(1—u)+ues , €(1-w)—e
|Anl*=——F—— [Ral*"=—F——
. . 1-—uw 1-uw
wa=KV+e+(1+ia)K?—u(l+iv)(e—ey), (3.17
wg=—KV+e+(1+ia)K2—u(l+iv)(e—e), The positivity of the norms require thatuw<1,
€(1—u)+ues>0, ande(1l—w)—es>0. Hence these solu-
K=k+iq. (3.11 tions never exist fow>1, while forw<1, they exist for all

e>e/(1—w) if u<1 and fores/(1—w)<e<ues/(u—1)

The standard analysis shows that this state is stable for ~for 1I<u<lmw. N _ _
Besides their stability versus perturbationsAnand R,

e(1—u)+ue<O. (3.12  Which has to be analyzed within the systégil5, one also
has to determine their stability versus perturbationsBin
It is convectively unstable for aroundB=0, which has the linear dispersion relation
€(l—u)+ue
e(1—u)+ues>0 (3.13 wB=—KV+(1+ia)K2+6—y(1+i5)(l_—l)JWS
and absolutely unstable for 1w —e,
—u(l+iv)————. (3.18
e(1—U)— (€.~ Ueg)>0. (3.14 1-uw

The growth rate of the modes that evolve with zero group

Hence, foru<1, pure rolls are absolutely unstable for any 2
velocity is thus

e> e, Wwhene < eg, While for e.> €5, they are convectively
unstable and absolutely stable fey<e<(e.—ues)/(1—u)

2
and absolutely unstable fore{—ueg)/(1—u)<e. On the )\B:E(l Y(A-u)-uw Esu(l Y) — v >
other hand, fou>1 ande.> e, they are convectively un- 1-uw 1-uw  4(1+e%)
stable and absolutely stable for amy<e<(ueg)/(u—1), €(1—U)+Ue— e (1—uw)
while for e.<e;, they are absolutely unstable for =(1—7y) ¢ (3.19

es<e<(Ues—€,)/(u—1) and convectively unstable for 1-uw
(ues—€.)/(Uu—1)<e<ued(u—1). In both cases, they are

convectively stable foue, /(u—1)<e. Hence, wheny>1, this state is stable, while foy>1, it is

absolutely unstable, except for

D. Stability of mixed states €s €.(1—uw)—ues

(3.20

The mixed states may be of two types, which result from 1-w € 1-u
superpositions of rolls and traveling wave states or rolls and
standing wave states. whenu<1 and for



ues—ei(1—uw)
u—1

Ues
e<
u—1

(3.21

when I<u<1iw.

2. Mixed standing waves and roll states

These states are asymptotic solutions of the complet

equations(2.2), where A,B,R+#0. The uniform solutions
may be written asA=|A,|e'%A, B=|B,|e'%n and
R=|Ry/€'?rn and satisfy
€_|Am|2_'y|Bm|2_u|Rm|2:0-
€_|Bm|2_7|Am|2_u|Rm|2:01
6_es_|Rm|2_W(|Am|2+|Bm|2):O:

¢Am= — (BlAm®+ 78IBp| >+ uv Ry )t

¢Bm: —(BIBl*+ 78| Ap| >+ v Ry )t

Pr, =~ WL(|Anl®+[Bn[*)t, (3.22
which gives
2 2:e(l—u)-i-UGs
Anl?= Bl =
e(l+vy—2w)—(1+vy)e
|Rm|2:( Y )—(1+7y)es (323

1+y—2uw

Hence, such states do not exist for(1+ y)/2, while for
w<(1+ vy)/2 they exist for (¥ y)es/(1+ y—2w)<e when
u<l and for e€,=(1+7vy)e/(1+y—2w)<e<ued
(u—1)=¢, when 1<u<(1l++y)/2w. For y>1 these states
are unstable, while foy<1 they are amplitude stable, but
could be phase unstable, according to the value of the imag
nary parts of the kinetic coefficients. In the following, | will
consider them as stable, which is the case when the imag
nary parts of the kinetic coefficients are sufficiently small.

IV. PATTERN SELECTION
IN DETERMINISTIC SYSTEMS

In this discussion, | will consider separately the case
where y>1, which favors traveling waves, and the case
where y varies in the range- 1< y<1, which implies su-
percritical bifurcations and preferred standing-wave solu-
tions.

When y>1, in the absence of group velocity, traveling
waves (TWs) may develop for anye>0. For w>1, they
remain stable versus spatial modulations, although roll pat
terns may also develop in the range-ues/(u—1), when
u>1. For w<1, TW states lose stability versus spatial
modulations ate=e5/(1—w), where they bifurcate to rolls
whenuw>1 or mixed modes wheaw<1.

In the presence of group velocity, TWs may only be sus-
tained by the dynamics fo&e>e.. For w>1, they remain
stable versus spatial modulations for atk €., while rolls
are stable in the range.<e<(e.—Ueg)/(1—u) when
u<l and fores<e (if es<e.) Or (Ues—€.)/(1—u)<e (if

PATTERN SELECTION AND THE EFFECT OF GRCRI. . .
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€

Rolls or SW

€
s

SwW

2w> 1+y

g IS VU

FIG. 1. Schematic phase diagram associated with the dynamical
system (2.2), in the (e,u) plane, for V=0, y<0, «=0.1,
B=6=0.15, andv=¢=0 whenw>(1+ y)/2.

€>€.) whenu>1. Forw<1, TW states again lose stability
versus spatial modulations at e5/(1—w), where they bi-
furcate to rolls wheruw>1 or mixed modes wheow<1.
They are thus stable in the rangg<e<<e /(1—w) .

Let me consider now weak cross couplings such that
—1<y<1l. Whenw>(1+ vy)/2, standing waves may de-
velop, in this case, for ang>0 in the absence of group
velocity (bistability with steady rolls may occur for
e>efu/(u—1)] if u>1). For w<(1+y)/2, however,
standing waves (SW9 are stable up toe=¢g(1
+ )/ (1+vy—2w)], where it bifurcates to mixed modes if
u<(l+y)/2w or to rolls if u>(1+y)/2w. In the range
1<u<(1l+vy)/2w, the mixed modes state bifurcates to
steady rolls ate=€eJu/(u—1)]. The corresponding phase
diagrams are represented in Figs. 1 and 2.

I- The presence of group velocity may strongly modify this
picture since the conducting state is convectively unstable
but absolutely stable for positive valuesafFor the sake of

e |
1
MM : Rolls

]

| e (1H)/(1+Y =2 W
H
|

€ - mm === B i
S l
|
I
SW I

X 2w < 1+y

|
1
|
|

FIG. 2. Phase diagram associated with the dynamical system
(2.2 for V=0, y<0, a=0.1, B=6=0.15, andv=,=0 when

W< (1+ y)/2.
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R
A €
: e=e, !
&3
S W or Rolls ;
: e=¢g,
SW
" Rolls
€ o
L 0 2w >1+y
// K u<l
0 80

2w > 1+y u>1

FIG. 4. Schematic phase diagram associated with the dynamical
FIG. 3. Schematic phase diagram associated with the dynamicalystem (2.2) with nonvanishing group velocitV+#0, in the
system (2.2) with nonvanishing group velocitty#0, in the (¢,e.) plane, fory<0, @=0.1, 8=6=0.15, andv={=0 when
(€,€c) plane, fory<0, «=0.1, B=6=0.15, andv=¢=0 when  w>(1+v)/2 andu<1.
w>(1+y)/2 andu>1.

(ii ) For e;<eg and (1+ y)/2w<u, the trivial conduction
simplicity, | will consider y<0, which implies that TW state is also convectively unstable up ¢e-€., where it
states become absolutely unstable before the conductiddifurcates to standing waves. These standing waves are
state, which then bifurcates directly to SWs or roll states. Lestable up toe= e[ (1+ y)/(1+ y—2w)], where they bifur-
me consider first ramp experiments in dynamical systemsate directly to steady rolls, with no intermediate mixed-
wherew>(1+ ¥)/2, which prohibits the existence of mixed mode state.
states. In such systems, one has to distinguish further be- (iv) For es<<e. andu<1, the trivial conduction state is
tween theu<1 andu>1 cases, withe.<e; Or ec<e..  convectively unstable up te=eg, where it bifurcates to
Whenw>(1+ y)/2 ande < e, the trivial conduction state steady rolls. These rolls are stable wup to
remains convectively unstable up &=¢€;, where it bifur- e€=(e.—Ues)/(1—u), where they bifurcate to the mixed
cates to standing wavealthough steady rolls could in prin- standing-wave—rolls state.
ciple appear for ang> ¢, they can only be sustained by the (V) For es<e. and 1<u, the trivial conduction state is
dynamics foru>1 in the rangesu/(u—1)]<e, while they ~ convectively unstable up te=es, where it bifurcates to
are absolutely unstable far<1). In quench experiments, steady rolls. These rolls remain stable for increasinghe
standing waves may appear as SOORas e. corresponding phase diagrams are represented in Figs. 5 and

On the contrary, wherw>(1+y)/2 and e.>¢€g, the 6.

trivial conduction state remains convectively unstable up to When 0<y<1, the only qualitative modification to these
€= e, Where it bifurcates to steady rolls. For<1, these results is that, on increasing the bifurcation parameter, TW

rolls are convectively unstable up to=(e.—Ueg)/(1—u), States may appear between the conduction state and standing
where they become absolutely unstable and bifurcate t¥aves, as shown, for example, in Fig. 7.
standing waves. Since standing waves are stable as soon as

€e>e;, the system s bistable in the range V. THE EFFECT OF NOISE

e.<e<(e.—Ue€g)/(1—u). Foru>1 rolls are convectively

unstable for e;<e<eJu/(u—1)] and stable for It may be expected, as in other cases of convective and

efu/(u—1)]<e. The corresponding phase diagrams areabsolute instability, that noise could play an important role

represented in Figs. 3 and 4. here in sustaining spatiotemporal patterns that should other-
For w<(1+ y)/2, the previous results are modified as Wise be convected away by mean flow effects. In the absence

follows. of stationary instability, spatially distributed noise should

(i) For e.<es and u<1, the trivial conduction state is sustain standing or traveling waves, according to the value of
convectively unstable up te=e., where it bifurcates to 7. inthe range &<e<e., while these waves are intrinsically
standing waves. These standing waves are stable up f/stained by the dynamics feg<e. On removing the noise
e=€e(1+7y)/(1+y—2w)], where they bifurcate to a insystemswhere<O0 ande.<e., the system relaxes to the

mixed standing-wave—roll state. conducting state for @e<e. and to traveling waves for
(i) For e;<eg and 1<u<(1+ vy)/2w, the trivial conduc- e.<e<e., as shown if13].
tion state is convectively unstable up é& €., where it bi- When the oscillatory instability is close to the stationary

furcates to standing waves. These standing waves are staldae, leading to possible interactions between steady and
up toe= €4 (1+ y)/(1+ y—2w)], where they bifurcate to a wavy modes, the situation may be more intricate. In particu-
mixed standing-wave—roll state. This mixed-mode state belar, the pattern selection obtained in the preceding section
comes unstable at=eJu/(u—1)], where it bifurcates to should be modified as follows. On the one hand, for
steady rolls. €> €., the deterministic pattern selection should not be af-
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FIG. 7. Schematic phase diagram associated with the dynamical
system (2.2) with nonvanishing group velocitt#0, in the
(e,ec) plane, fory>0, «=0.1, B=6=0.15, andv=¢=0 when
w>(1+y)/2 andu>1.

starting from the trivial conducting state. For quench experi-
ments in the range,<e<e., a competition may arise be-
tween noise sustained wave patterns and dynamically sus-
tained roll patterns, which needs to be studied numerically,
as shown in Sec. VI. On noise removal, interesting situations
may occur in systems wherg<e.<e. since the standing
waves should relax to traveling waves fef<e<e., to
steady rolls fore;<e<e,, and to the conducting state for
O0<e<es.

FIG. 5. Schematic phase diagram associated with the dynamical

system (2.2) with nonvanishing group velocity#0, in the
(e,ec) plane, fory<0, «=0.1, B=6=0.15, andv=¢=0 when
w<(1+y)/2 and(a) (1+ y)/2w<u and(b) 1<u<(1+ y)/2w.

VI. NUMERICAL ANALYSIS

The preceding results have been confirmed by numerical
tests performed with a finite difference code for a system of
200 points. The boundary conditions werdé\(0)

fected by the presence of noise since all the possible patternsp(0)=B,(0)=0 and A,(200)=R(200)=B(200)=0.

are intrinsically sustained by the dynamics. On the othefq the stochastic cases, noise intensities have been chosen
hand, standing or traveling waves should be sustained byaonveen 104 and 10°2. The following observations are par-

spatially distributed noise for€e<e. in ramp experiments

¢ E=E,
)
___________ oo
Rolls or SW -~
Rolls
0 €

[3

ticularly relevant.

(i) In a system wherey=—-0.5, «=0.1, 8= 56=0.15,
v=¢=0,w=0.5,u=2, andV=1, the following succession
of patterns is obtained in a ramp experiméag., lineR in
Fig. 3 in a deterministic system : uniform steady state up to
€= €, (e.g., point 1 on lineR in Fig. 3) and rolls fore,<e
(e.g., points 2 and 3 on linR in Fig. 3. In stochastic sys-
tems with spatially distributed noise, standing waves form
for any e>0, but, on noise removal, the system relaxes to
standing waves foe. <€ (e.g., point 3 on lineR in Fig. 3),
to rolls for es<<e<e, (e.g., point 2 on lineR in Fig. 3), and
to the trivial state fore<es. The corresponding numerical
results are presented in Figs. 8—10.

In Fig. 8,e=0.1, €,=0.15, ande,=0.1666. . . , such that
e<es<e,. In the absence of noise, a snapshot of a wavy
transient that is eliminated as the result of the convective
nature of the instability of the trivial ground state is repre-

FIG. 6. Schematic phase diagram associated with the dynamic@€nted in addition to the standing-wave pattern obtained in

system (2.2) with nonvanishing group velocitV#0, in the
(e,ec) plane, fory<0, «=0.1, B=6=0.15, andv=¢=0 when
w<(1+1v)/2 andu<1.

the presence of a distributed white noise of intensity
I=10"%. Note the left-right asymmetry in the behavior of
the amplitudes of the underlying traveling waves near the
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FIG. 8. Results of the numerical resolution of the dynamical . . .
y FIG. 10. Results of the numerical resolution of the dynamical

sy_stem (2'2)_ with _noEvanlshln_g _group_velocni/V:l_ for system (2.2) with nonvanishing group velocityV=1 for
y=-0.5, a=0.1, B=6=0.15,v=,=0, w=0.5, u=2, €=0.1, — 05 w01 B=56=015 0=7=-0 W=05 U=2 e=0.2
and u=e—es=—0.05 (the transients disappear in the long-time 7_d . '_a__b ’1'8_ =0.15v=¢=0, w=05,u=2, €=0.2,
limit as the result of the convective instability of the trivial steady andpu=e=es=0.L1.

line R in Fig. 7) lead to the following succession of patterns

boundaries, due to the presence of the group velocity. in a deterministic system: uniform steady state upetoe

In Fig. 9, e=0.15, e,=0.05, ande’=0.1666 . ., such and rolls fore;<e€ (e.g., points 1 and 2 on linR in Fig. 7),

that e.< e< ;, Since’e S<E a réll pattérn is obtaine,d in the While in stochastic systems with spatially distributed noise,

S c S ’ . ! )
absence of noise, while in the presence of a Gaussian whilsetandlng waves form for any-Oe. However, after noise re
noise of amplitudd =104, a standing wave pattern is ob- mO\{aI, thg sys'tem relaxes to roIIs_fe;< €< (€.g., point 1
tained, similar to the one of Fig. 8, except that the boundanf" IN€ R in F|g.|.7) and to travellrr:g waves foec<e< ECI
layer is smaller, as a consequence of the higher value of thé§-9-» Point 2 on lineR in Fig. 7). The corresponding results
bifurcation parameter. are presented in Figs. 11 and 12.

In Fig. 10,e=0.2, e,=0.1, ande,,=0.1666 . ., such that , In particular, in Fig. 12,6:9.3, e,=0.1, eC:0.25,_ and
es<e.<e, and rolls are still the selected pattern in the ap-éc =05 SUch thales< ec<e<e; . Hence rolls are still the
sence of noise. As in the preceding cases, noise sustaiﬁgleCtEd pattgrn In detgrm|nlst|c sys.tems.and standing waves
standing waves, which, furthermore remafn stable aftef®Y be sustained by distributed white noise. However, since
noise remova[wi,th a slig’ht amplitude r’eduction thougHhn €IS such that the conduction state is "?‘bso'”te'y unstable,
this case, noise not only sustains the wave pattern, but al hile travellng_ waves are .only convectively unstab[e, the
induces 5’1 transition between rolls and standing wa\}es atter are obtained after noise removal. Here also noise me-

(i) In systems wherey=0.5, a=0.1, B=56=0 15 diates a transition from rolls to wave patterns.

o ) S | have furthermore tested the effect of group velocity

v={¢{=0,w=15u=2, andV=1, ramp experimentée.g.,

state.

0.40 T 0.40 T T
, — R (no noise)}
-——— S Ex :2::3 ——~ A (with noise)
! - L e B (with noi ]
030 ! R (w noise) 0.30 (with noise)
] H ---- A (no noise) g
3 ! B (no noise) 3
2 ! ——~ R (no noise) g |l .
o 020 ! g 020 -7
E H 2 7
= H - T
£ 1 g LT T .
< :’ 7/
I et LT 0.10 |
0t0 ||~ 7
i/ /
/ /
//
0.00 V 1 1 1 0.00 . 1 1 i -
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
X X

FIG. 11. Results of the numerical resolution of the dynamical

system(2.2) with nonvanishing group velocity/=1 for y=0.5,
a=0.1, B=6=0.15 v=¢{=0, w=0.5, u=2, €=0.2, and

u=e—e;=0.1.

FIG. 9. Results of the numerical resolution of the dynamical
system (2.2) with nonvanishing group velocityV=1 for
vy=-0.5¢=0.1, B=6=0.15,v=¢=0, w=0.5,u=2, €=0.15,

and u=e—e,=0.1.
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FIG. 12. Results of the numerical resolution of the dynamical e RN
system(2.2) with nonvanishing group velocit¥=1 for y=0.5, 0.000.0 50.0 100.0 150.0 200.0
a=0.1, B=6=0.15 v={¢=0, w=15, u=2, €=0.3, and X
pn=e—€s=0.2.

FIG. 14. Results of the numerical resolution of the dynamical
. . L system(2.2) with nonvanishing group velocity=1, in the pres-
variations in deterministic systems where=—0.5, ence of spatially distributed noise of low intensity=2x 10™%),
a=0.1,,8=5=0.15,v=§=0, w=0.2, andu=1.2. Results for €=0.2, pw=e—e=0.2, y=0.5 «=0.1, B=56=0.03,
are presented in Fig. 13, where it may be seen that, on iny— ;—0.07, u=2, and two different values of ww=0.8 and
creasing the group velocity frolv=0.5 to V=15 [e.g., w=1.5).
states 1 to 3 on lin® in Fig. 5(b)], one passes from standing
waves ¥=0.5 andV=1) to rolls (V=1.5), while on de- roll structures emerge for noise intensitles10~* (Fig. 14
creasing the group velocity froM=1.5 toV=0.5, the sys- or |=8x 103 (Fig. 15. However, forw=1.5, rolls or
tem remains in the rolls state, Confirming the blStabl'lty Ofwaves emerge at random for low noise intensities
rolls and waves patterns. (1=10"% (cf. Fig. 14, while waves always emerge at

On the other hand, interesting competition phenomenzhigher noise intensitiesl €8x 10™%) (cf. Fig. 15. The nu-
may occur between noise and dynamically sustained strugnerical results also confirm that the healing length or bound-
tures. Although such a competition is difficult to quantify ary |ayer extension decreases for increasing noise intensity.
and requires a systematic numerical analysis, preliminary re- "On the other hand, fow=1.5, the stability of rolls ob-
sults show that the cross-coupling terms that renormalize thgyined in a deterministic quench has been tested versus spa-
growth rate of the different kinds of modes could play atja|ly distributed noise of increasing intensity. In such an
capital role in dynamical selection processes. For examplesxperiment, once steady rolls are obtained, all the parameters
in a perfect codimension-2 situatio=0), numerical re-  of the dynamics are kept constant, except the noise intensity,

sults obtained foy=0.5,u=2, and small imaginary parts of \which is slowly increased. As shown in Fig. 16, rolls turned
the kinetic coefficients strongly differ fow<<u/2 and

w>u/2 in the presence of noise. For example, ¥o+0.8,

0.40 ———~ - :
--------- A (u=2, w=0.8)
L, T . ---- B (u=2, w=0.8)
Vi E— —— R (u=2, w=0.8)
/ 0.30 + ——— A (U=2, w=1.5)
» - B (u=2, w=1.5)
2
3 -
o
@ . . £ /
g - A, B (V = 0.5, increasing) o 0.20 F J .
3 ——=- A, B (V =1, increasing) i S e’
5 ~-— R(V=15->0.5) 2 ~\
8 £ \
3 < \
= 0.10 \
£ \
< \
o e e ~e \
. ~ /
X
0.00 ! ; ;
50.0 100.0 150.0 200.0
X
50.0 100.0 150.0 . . .
X FIG. 15. Results of the numerical resolution of the dynamical

system(2.2) with nonvanishing group velocity=1, in the pres-
FIG. 13. Results of the numerical resolution of the dynamicalence of spatially distributed noise of higher intensity
system(2.2) with varying group velocities fory=—0.5, «=0.1, (1=8x107%), for e=0.2, u=e—€,=0.2, y=05, a=0.1,
p=6=0.15, v=¢=0, w=0.2, u=1l2, =02, and B=6=0.03,v=¢=0.07,u=2, and two different values ofv
pn=€e—€,=0.1. (w=0.8 andw=1.5).
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FIG. 16. Results of the numerical resolution of the dynamical FIG. 17. Modulus of the roll amplitudéR|? obtained numeri-
system(2.2) with nonvanishing group velocity=1, in the pres-  cally from the dynamical systerf2.2) in the presence of spatially
ence of spatially distributed noise of increasing intensity ( distributed noise of increasing intensity 1)( (e=0.2,
(e=0.2, up=e—€6=02, y=05 a=01, B=6=0.03, p=e—¢e,=0.2, y=0.5 a=0.1, B=6=0.03,v=¢=0.07,u=2,
v={=0.07,u=2, andw=1.5), showing a noise-induced transition w=0.8, andv=1).

from roll to wave patterns. . . o
when the corresponding Hopf bifurcation is close to another

out to be stable up to noise intensities of the order oImSt.ab'“ty’ which leads, for example, to steady roll patterns,
6x 103, where they bifurcate to wave pattemns. These s in the case of binary or V|sgqelast|c fluid convection.

. . . When the absolute instability threshold of the trivial
sults _conflrm the subtle mterplay bet.ween dyngmlc and Stoéteady state remains below the stationary instability
chastic effects on pattern selection in convectively unstabl? e.<e,), the transition to wave patterns is only retarded by
systems. , the mean flow in deterministic systems, contrary to stochas-

Finally, it has to be noted that the amplitude of the pat-tic ones where noise is able to sustain such patterns in the
terns are also noise amplified. Effectively, although theconyectively unstable regime. In this case, pattern selection
moduli |A|%, |B|?, and|R|* obtained numerically are found s thus not qualitatively modified by the neighboring station-
to agree with the analytical ones in deterministic systemsary instability.
they are amplified in the presence of noise, as shown in Fig. On the contrary, in deterministic systems, when> e,

17. In this case, rolls are sustained by the dynamics and, istanding waves are eliminated as an intermediate pattern be-
the absence of noise, the mean value of the modyRE)  tween the conduction state and rolls or mixed modes, al-
reaches the expected deterministic vadue 0.2 in the bulk.  though bistability domains may exist. However, the succes-
In the presence of spatially distributed noise, this value insion of patterns that would occur in the absence of mean flow
creases with noise intensitjor example, for a noise inten- is recovered in the presence of spatially distributed noise,
sity of 8x 1073, |R|? reaches 0.256in agreement with the although interesting competition phenomena may occur be-
fact that the linear evolution of the mean square of the detween noise and dynamically sustained structures. Prelimi-
viation of the roll amplitude around its deterministic value nary numerical analysis show that, in this case, pattern selec-

(p: R— \/E) tends to an asymptotic value proportiona| to thetion should be very sensitive to the interplay between kinetic
noise intensity. and stochastic effects on the one hand and experimental pro-

tocols on the other.
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