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Pattern selection and the effect of group velocity on interacting oscillatory
and stationary instabilities

D. Walgraef*
Departament de Fı´sica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain

~Received 29 August 1996!

The effect of mean flows on pattern stability in systems where oscillatory instabilities of the Hopf type
interact with stationary ones is investigated. In particular, it is shown that pattern selection may be strongly
modified when the absolute instability threshold of the trivial uniform steady state is rejected beyond the
stationary instability. The effect of spatially distributed noise including the competition between noise sus-
tained and dynamically sustained structures is also discussed.@S1063-651X~97!01006-4#

PACS number~s!: 47.20.Ky, 05.40.1j, 43.50.1y, 47.50.1d
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I. INTRODUCTION

Several physicochemical systems driven out of equi
rium present oscillatory instabilities or Hopf bifurcation
leading to the formation of spatiotemporal wave patter
Celebrated examples are Rayleigh-Be´nard instabilities in bi-
nary fluids@1#, electrohydrodynamic instabilities in nemat
liquid crystals @2#, or convective instabilities in Taylor
Couette systems@3#. Close to the instability, the system
dynamics may be reduced, in one-dimensional geometrie
coupled complex Ginzburg-Landau equations that desc
the evolution of the amplitude of counterpropagating wa
that may appear beyond the bifurcation point@4#. The coef-
ficients of these equations have been evaluated by mea
analytical and numerical techniques for binary fluid conv
tion for different separation ratios, Prandtl numbers, a
Lewis numbers@5# and for polymeric fluid convection fo
different fluid characteristics@6#. From the values of thes
kinetic coefficients of these equations, which have been
rived directly from the Navier-Stokes equations, it appe
that in binary fluid convection the selected pattern sho
correspond to traveling waves, while in viscoelastic conv
tion there is a wide range of parameters where the sele
stable patterns should correspond to standing waves. Fur
more, in the latter case, the amplitude and phase stabilit
these standing waves versus extended perturbations
been computed for a series of typical values of the par
eters corresponding to polymeric solutions ranging from J
freys to Maxwellian@7#.

However, these Ginzburg-Landau equations contain m
flow terms induced by group velocities whose importan
varies according to the fluid under consideration. As a res
one also has to study the convective and absolute stabilit
the wave patterns. Let me recall that when the reference
is convectively unstable, localized perturbations are driv
by the mean flow in such a way that they grow in the mov
reference frame, but decay at any fixed location. On the c
trary, in the absolute instability regime, localized perturb
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tions grow at any fixed location@8#. As a result, the behavio
of the system is qualitatively very different in both regime
In the convectively unstable regime, a deterministic syst
cannot develop the expected wave patterns, except in
ticular experimental setups~e.g., in annular containers or i
the presence of reflecting boundaries!, while in a stochastic
system noise is spatially amplified and gives rise to noi
sustained structures@9#. On the contrary, in the absolutel
unstable regime, waves are intrinsically sustained by the
terministic dynamics, which provides the relevant select
and stability criteria@10,11#. Hence the concepts of convec
tive and absolute instability are essential to understand
behavior of nonlinear wave patterns and their stability@9,12#.

Noise-sustained wave patterns have been widely stud
first, in systems where single or counterpropagating trave
waves are preferred and, more recently, in systems whe
is standing waves that are the preferred structures@9,13–18#.
In particular, in the latter case, it has been shown tha
deterministic systems transitions from the conduction stat
traveling waves and finally to standing waves occur
thresholds that depend on the group velocity, while in s
chastic systems standing waves are sustained by noise
the parameter range beyond the Hopf bifurcation@18#.

Besides the oscillatory instabilities, many of these s
tems also present stationary instabilities leading to ste
spatial patterns. Which type of convection appears first,
cillatory or stationary, is determined, in polymeric fluids, b
their rheological parameters. In particular, at fixed Pran
numbers, it is the stress relaxation time that fixes the rela
position of each instability threshold. Hence, in the ca
where oscillatory instability appears first, the correspond
absolute instability may nevertheless be rejected beyond
stationary instability if the group velocity is sufficientl
large, such as in Maxwell fluids. In this case, the differen
between deterministic and stochastic systems should
qualitative in nature. Effectively, in deterministic system
stationary patterns should develop first, even though
Hopf bifurcation is the first to appear, while in stochas
systems, standing waves should be sustained by noise in
yond the Hopf bifurcation.

To describe this situation, one needs to consider coup
amplitude equations for interacting oscillatory and stea
modes. The aim of this paper is to achieve a qualitative
derstanding of the behavior of such dynamical systems
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6888 55D. WALGRAEF
arbitrary values of the cross-coupling coefficients and of
group velocity and to analyze the effect of these parame
on the pattern selection, either in deterministic and stocha
systems.

The paper is organized as follows. In Sec. II, amplitu
equations for interacting oscillatory and stationary modes
presented in the general case. In Sec. III, convective
absolute instability thresholds are determined for the diff
ent ground states when the cross coupling between cou
propagating waves sustains traveling waves or stand
waves. The resulting pattern selection is analyzed for de
ministic systems in Sec. IV and for stochastic systems
Sec. V. Numerical checks are presented in Sec. VI and c
clusions are drawn in Sec. VII.

II. AMPLITUDE EQUATIONS FOR INTERACTING
OSCILLATORY AND STATIONARY INSTABILITIES

Let me consider a driven physicochemical system wh
an oscillatory instability, say, a Hopf bifurcation with broke
spatial symmetry, and a stationary pattern forming instabi
are close together. In their vicinity, the order-parameter-l
variable may be written, in one-dimensional horizontal g
ometries, as

uW ~rW,t !5@uW 0~z!~A~X,T!ei ~kcx1vct !1B~X,T!e2 i ~kcx2vct !!

1uWS~z!R~X,T!eik0x1c.c.#, ~2.1!

where kc and k0 are the critical wave numbers associat
with each instability. The amplitudesA(X,T), B(X,T), and
R(X,T) depend on the slow variablesX5e1/2x and
T5e21t, wheree is the reduced distance to one of the i
stability thresholds, say, the Hopf instability thresho
@e5(r2r h)/r h , where r is the bifurcation parameter an
r h its critical value at the Hopf bifurcation#. The structure of
their evolution equations may easily be obtained on using
symmetries of the problem and correspond to the coup
Ginzburg-Landau equations

]TA5V]XA1eA1~11 ia!]X
2A2~11 ib!uAu2A

2g~11 id!uBu2A2u~11 iv !uRu2A,

]TB52V]XB1eB1~11 ia!]X
2B2~11 ib!uBu2B

2g~11 id!uAu2B2u~11 iv !uRu2B,

t]TR5~e2es!R1j0
2]X

2R2uRu2R

2w~11 i z!~ uAu21uBu2!R, ~2.2!

wherees5(r s2r h)/r h is positive when the oscillatory insta
bility is the first to appear on increasing the bifurcation p
rameter, which is the case we will consider here.j0

2 is related
to dispersive effects;g andd are the cross-coupling coeffi
cients between oscillatory modes~I will consider21,g in
order to ensure supercritical bifurcations!; u, n, w, andz are
the cross-coupling coefficients between oscillatory a
steady modes.

The evolution equations for the amplitudesA andB in the
absence of interactions with stationary modes have been
rived and studied in different contexts@4,19–21,13,22# and it
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is now well known that it is the nonlinear cross-couplin
term between both amplitudes that determines if the sta
patterns correspond to traveling~strong cross-coupling! or
standing~weak cross-coupling! waves. Their generalization
to the codimension-two problem has been studied in
framework of Rayleigh-Be´nard convection in binary fluids
@23,5#, where the bifurcation parameter is the Rayleigh nu
ber and the wave cross-coupling termg is larger than one
and favors traveling waves. Up to now, they have not be
studied for low wave cross couplings (g,1), which favor
standing waves. This is the case of viscoelastic convect
where the amplitude equations have been calculated for n
interacting oscillatory and stationary instabilities only@6#.
Hence the coefficientsu(11 in) and w(11 i z) are not
known yet. I will nevertheless study these equations
g,1 and arbitrary cross-coupling coefficientsu(11 in) and
w(11 i z) in order to assess the possible behavior of
solutions of these equations. The application of the result
viscoelastic convection should improve the qualitative u
derstanding of pattern formation in polymeric solutions a
provide useful hints for the interpretation of experimen
results@24#.

III. STABILITY OF THE GROUND STATES

In order to determine the patterns that may be selected
the dynamics~2.2!, one has to analyze the stability of th
different steady-state solutions and, in the first place, of
trivial conduction state. Since Eqs.~2.2! correspond to super
critical bifurcations and thus to stabilizing nonlinearities, th
study may be performed through a linear stability analys

A. Stability of the conduction state

On linearizing Eqs.~2.2! around the trivial solution
A(X,T)5B(X,T)5R(X,T)50, the complex growth rates o
disturbances of wave numberk satisfy the dispersion rela
tions

vA5KV1e1~11 ia!K2,

vB52KV1e1~11 ia!K2, K5k1 iq

vR5
1

t
@~e2es!1j0

2K2# ~3.1!

and the growth rates of such perturbations are given
Rev(K). Using the method of steepest descent, the lo
time behavior of the system along a ray defined by fix
X/T, i.e., in a frame moving with a velocityV05X/T, is
governed by the saddle point defined by

ReS dv

dKD U
K0

50 , ImS dv

dKD U
K0

5V0 . ~3.2!

Since absolute instability occurs when perturbations gr
at fixed locations, one has to consider the growth rate
modes evolving with zero group velocity, which are defin
by

ReS dv

dKD5ImS dv

dKD50. ~3.3!
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55 6889PATTERN SELECTION AND THE EFFECT OF GROUP . . .
These conditions define the wave number

qA~B!52akA~B! , qR5kR50, kA~B!57
V

2~11a2!
.

~3.4!

The real part ofv, which determines the growth ratel of
these modes, is then

lA~B!5Re~vA~B!!5e2
V2

4~11a2!
,

lR5Re~vR!5e2es . ~3.5!

Therefore, the trivial conduction state is absolutely unsta
if l.0. As already shown in@9#, this condition determines a
critical line in the parameter space, which can be expres
for the group velocityV or the control parametere as

Vc52Ae~11a2! or ec5
V2

4~11a2!
. ~3.6!

Hence, for 0,e,ec , the conduction state is convective
unstable towards wavy modes and wave patterns are un
to develop in the absence of noise. Fore.ec , wave patterns
may grow and are sustained by the dynamics, even in
absence of noise. On the other hand, for 0,e,es the con-
duction state is stable versus stationary modes and uns
for es,e. Hence, fore.ec ande.es both types of modes
may start growing, but it is of course their nonlinear intera
tions that will determine the resulting patterns and their s
bility. Let me then consider the different possibilities, whi
are pure wave patterns, pure roll patterns, and mixed st
involving rolls and wave patterns. I will consider here un
form amplitude solutions corresponding to spatiotempo
patterns with critical wave numbers. The stability of mod
lated or wave solutions will be considered later on.

B. Stability of pure wave patterns

1. Traveling waves

One class of nontrivial steady states of the dynamical s
tem ~2.2! corresponds pure critical traveling-wave solutio
A(X,T)05Aeexp2i(beT1f), B(X,T)5R(X,T)50 or
B0(X,T)5Aeexp2i(beT1f), A(X,T)5R(X,T)50, where
f is an arbitrary phase. One may consider the first fam
without loss of generality and, in order to study its line
stability, one has to look for solutions in the form
A(X,T)5(Ae1a)exp2ibeT, B(X,T)5b and compute the
eigenvalues of the linearized evolution equations fora, b,
and their complex conjugatesā and b̄ . The real parts of the
eigenvalues of the Fourier transform ofa are well known
~see, for example,@25#! and read

Rev uau522e2~12ab!q21•••,

Revf52~11ab!q22
a2~11b2!

2e
q41••• . ~3.7!

The first one is always negative, but the second may bec
positive and the system may experience a Benjamin-Feir
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stability when 11ab is negative@26,27#. In the following,
we will consider systems wherea and b are sufficiently
small and positive such that 11ab.0.

The only remaining instability mechanism may then res
from the growth ofB. Effectively, the linearized evolution
equations forb or b̄ give the growth rate

vB5e~12g!2 i egd2Kv1~11 ia!K2. ~3.8!

As in Sec. III A, the conditions~3.3! and ~3.4! determine

K. The stability of the solution@Ae exp2i(beT1f),0,0# is
determined by the growth ratesl j5Re(v j ) ( j5A,B,R).
Since vA is negative, we get the following condition fo
absolute stability of the pure traveling-wave states:

lB5Re~vB!5e~12g!2
V2

4~11a2!
,0,

lR5Re~vR!5e~12w!2es,0. ~3.9!

Hence, forg.1 andw.1, pure traveling waves are stabl
while they may become unstable forg,1 and/orw,1. For
w,1, traveling waves are stable for 0,e,es /(12w) and
become unstable versus spatial modulations
e.es /(12w). For 21,g,1, one has to distinguish be
tween the following cases.

(i) w.1. Stationary spatial modulations decay and pu
traveling waves are thus convectively unstable, but ab
lutely stable versus counterpropagating wavy modes
0,e,ec85ec /(12g) and absolutely unstable forec8,e,
The corresponding critical group velocity isVc85VcA12g.
As a result, on increasing the bifurcation parameter in de
ministic systems with 0,g,1, traveling waves should be
expected forec,e,ec8 , as shown in Ref.@18#. However,
wheng,0, which is the case in viscoelastic convection@6#,
ec8,ec . Hence, in deterministic dynamics, a traveling-wa
state cannot be obtained, in ramp experiments, from
trivial conduction state.

(ii) w,1. The absolute and convective stability properti
of pure traveling waves versus counterpropagating w
modes remain unchanged, but they are unstable ve
stationary spatial modulations fore.es /(12w). Pure trav-
eling waves are thus only convectively unstable
e,min@ec8,es /(12w)#. Hence, for 0,g,1, they may
only be expected whenec,es /(12w) for ec,e
,min@ec8 ,es /(12w)#, while for g,0, they still cannot be
obtained from the trivial conduction state.

2. Stability of standing waves

A second class of nontrivial steady states of the dyna
cal system~2.2! corresponds to the pure critical standin
wave solutions As(X,T)5Ae/(11g)exp2i@(b1gd)/
(11g)eT1f], Bs(X,T)5Ae/(11g)exp2i@(b1gd)/
(11g)eT1c], and R(X,T)50, wheref and c are arbi-
trary phases. Forg.1, standing waves are known to b
unstable. Forg,1, standing waves are stable versus pert
bations inA and B, provided 11a(b2g2d)/(12g2).0
@19# ~which reduces to the habitual Benjamin-Feir criteri
11ab.0 in the special case whered5b @28#!. I will con-
sider here that these conditions are satisfied, as it is usu
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6890 55D. WALGRAEF
the case for convection in Oldroyd-B viscoelastic fluids@7#,
which is a typical example of system whereg,1. Note that
the results obtained below are also valid for noncriti
standing-wave solutions in their phase stability domain~the
phase stability condition being derived in@7#!. Outside this
domain, one needs to study the convective absolute stab
of the corresponding patterns, an aspect that will be analy
later on. For the time being, let us consider only critic
standing waves that are stable versus wavy mode pertu
tions.

The full stability analysis also requires one to study t
growth rate of spatial disturbances inR around the state
(As,Bs,0!, which is given by

lR5Re~vR!5eS 12
2w

11g D2es . ~3.10!

In these conditions, critical standing waves are thus sta
for any e.0 if 2w.11g and for 0,e
,es@(11g)/(11g22w)# if 2w,11g.

C. Stability of steady rolls

The linear growth rates of the wavy mode perturbatio
around the pure critical roll state~0,0,R05Ae2esexpif) that
may exist fore2es are given by

vA5KV1e1~11 ia!K22u~11 iv !~e2es!,

vB52KV1e1~11 ia!K22u~11 iv !~e2es!,

K5k1 iq. ~3.11!

The standard analysis shows that this state is stable for

e~12u!1ues,0. ~3.12!

It is convectively unstable for

e~12u!1ues.0 ~3.13!

and absolutely unstable for

e~12u!2~ec2ues!.0. ~3.14!

Hence, foru,1, pure rolls are absolutely unstable for a
e.es whenec,es , while for ec.es , they are convectively
unstable and absolutely stable fores,e,(ec2ues)/(12u)
and absolutely unstable for (ec2ues)/(12u),e. On the
other hand, foru.1 andec.es , they are convectively un
stable and absolutely stable for anyes,e,(ues)/(u21),
while for ec,es , they are absolutely unstable fo
es,e,(ues2ec)/(u21) and convectively unstable fo
(ues2ec)/(u21),e,ues/(u21). In both cases, they ar
convectively stable forues /(u21),e.

D. Stability of mixed states

The mixed states may be of two types, which result fro
superpositions of rolls and traveling wave states or rolls
standing wave states.
l

ity
ed
l
a-

le

s

d

1. Mixed traveling waves and roll states

These states are asymptotic solutions of the equation

]TA5V]XA1eA1~11 ia!]X
2A2~11 ib!uAu2A

2u~11 iv !uRu2A,

t]TR5~e2es!R1j0
2]X

2R2uRu2R

2w~11 i z!uAu2R, ~3.15!

with B50 ~or the symmetric states whereA andB are ex-
changed!. Their uniform solutions may be written a
A5uAmueifAm andR5uRmueifRm and satisfy

e2uAmu22uuRmu250,

e2es2uRmu22wuAmu250,

fAm
52~buAmu21uvuRmu2!t,

fRm
52wzuAmu2t. ~3.16!

As a result, one has

uAmu25
e~12u!1ues

12uw
, uRmu25

e~12w!2es
12uw

.

~3.17!

The positivity of the norms require thatuw,1,
e(12u)1ues.0, ande(12w)2es.0. Hence these solu
tions never exist forw.1, while forw,1, they exist for all
e.es /(12w) if u,1 and fores /(12w),e,ues /(u21)
for 1,u,1/w.

Besides their stability versus perturbations inA and R,
which has to be analyzed within the system~3.15!, one also
has to determine their stability versus perturbations inB,
aroundB50, which has the linear dispersion relation

vB52KV1~11 ia!K21e2g~11 id!
e~12u!1ues

12uw

2u~11 iv !
e~12w!2es

12uw
. ~3.18!

The growth rate of the modes that evolve with zero gro
velocity is thus

lB5e
~12g!~12u!2uw

12uw
1es

u~12g!

12uw
2

V2

4~11a2!

5~12g!
e~12u!1ues2ec8~12uw!

12uw
. ~3.19!

Hence, wheng.1, this state is stable, while forg.1, it is
absolutely unstable, except for

es
12w

,e,
ec8~12uw!2ues

12u
~3.20!

whenu,1 and for
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ues2ec8~12uw!

u21
,e,

ues
u21

~3.21!

when 1,u,1/w.

2. Mixed standing waves and roll states

These states are asymptotic solutions of the comp
equations~2.2!, where A,B,RÞ0. The uniform solutions
may be written asA5uAmueifAm, B5uBmueifBm, and
R5uRmueifRm and satisfy

e2uAmu22guBmu22uuRmu250,

e2uBmu22guAmu22uuRmu250,

e2es2uRmu22w~ uAmu21uBmu2!50,

fAm
52~buAmu21gduBmu21uvuRmu2!t,

fBm
52~buBmu21gduAmu21uvuRmu2!t,

fRm
52wz~ uAmu21uBmu2!t, ~3.22!

which gives

uAmu25uBmu25
e~12u!1ues
11g22uw

,

uRmu25
e~11g22w!2~11g!es

11g22uw
. ~3.23!

Hence, such states do not exist forw.(11g)/2, while for
w,(11g)/2 they exist for (11g)es/(11g22w),e when
u,1 and for ew5(11g)es /(11g22w),e,ues/
(u21)5eu when 1,u,(11g)/2w. For g.1 these states
are unstable, while forg,1 they are amplitude stable, bu
could be phase unstable, according to the value of the im
nary parts of the kinetic coefficients. In the following, I wi
consider them as stable, which is the case when the im
nary parts of the kinetic coefficients are sufficiently smal

IV. PATTERN SELECTION
IN DETERMINISTIC SYSTEMS

In this discussion, I will consider separately the ca
where g.1, which favors traveling waves, and the ca
whereg varies in the range21,g,1, which implies su-
percritical bifurcations and preferred standing-wave so
tions.

When g.1, in the absence of group velocity, travelin
waves ~TWs! may develop for anye.0. For w.1, they
remain stable versus spatial modulations, although roll p
terns may also develop in the rangee.ues/(u21), when
u.1. For w,1, TW states lose stability versus spat
modulations ate5es /(12w), where they bifurcate to rolls
whenuw.1 or mixed modes whenuw,1.

In the presence of group velocity, TWs may only be s
tained by the dynamics fore.ec . For w.1, they remain
stable versus spatial modulations for alle.ec , while rolls
are stable in the rangees,e,(ec2ues)/(12u) when
u,1 and fores,e ~if es,ec) or (ues2ec)/(12u),e ~if
te

i-

gi-

e

-

t-

l

-

es.ec) whenu.1. Forw,1, TW states again lose stability
versus spatial modulations ate5es /(12w), where they bi-
furcate to rolls whenuw.1 or mixed modes whenuw,1.
They are thus stable in the rangeec,e,es /(12w) .

Let me consider now weak cross couplings such tha
21,g,1. Whenw.(11g)/2, standing waves may de-
velop, in this case, for anye.0 in the absence of group
velocity „bistability with steady rolls may occur for
e.es@u/(u21)# if u.1…. For w,(11g)/2, however,
standing waves ~SWs! are stable up to e5es@(1
1g)/(11g22w)], where it bifurcates to mixed modes if
u,(11g)/2w or to rolls if u.(11g)/2w. In the range
1,u,(11g)/2w, the mixed modes state bifurcates to
steady rolls ate5es@u/(u21)#. The corresponding phase
diagrams are represented in Figs. 1 and 2.

The presence of group velocity may strongly modify this
picture since the conducting state is convectively unstabl
but absolutely stable for positive values ofe. For the sake of

FIG. 1. Schematic phase diagram associated with the dynamic
system ~2.2!, in the (e,u) plane, for V50, g,0, a50.1,
b5d50.15, andv5z50 whenw.(11g)/2.

FIG. 2. Phase diagram associated with the dynamical syste
~2.2! for V50, g,0, a50.1, b5d50.15, andv5z50 when
w,(11g)/2.
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6892 55D. WALGRAEF
simplicity, I will consider g,0, which implies that TW
states become absolutely unstable before the conduc
state, which then bifurcates directly to SWs or roll states.
me consider first ramp experiments in dynamical syste
wherew.(11g)/2, which prohibits the existence of mixe
states. In such systems, one has to distinguish further
tween theu,1 and u.1 cases, withec,es or es,ec .
Whenw.(11g)/2 andec,es , the trivial conduction state
remains convectively unstable up toe5ec , where it bifur-
cates to standing waves„although steady rolls could in prin
ciple appear for anye.es , they can only be sustained by th
dynamics foru.1 in the rangees@u/(u21)#,e, while they
are absolutely unstable foru,1…. In quench experiments
standing waves may appear as soon asec8,e.

On the contrary, whenw.(11g)/2 and ec.es , the
trivial conduction state remains convectively unstable up
e5es where it bifurcates to steady rolls. Foru,1, these
rolls are convectively unstable up toe5(ec2ues)/(12u),
where they become absolutely unstable and bifurcate
standing waves. Since standing waves are stable as soo
e.ec , the system is bistable in the rang
ec,e,(ec2ues)/(12u). For u.1 rolls are convectively
unstable for es,e,es@u/(u21)# and stable for
es@u/(u21)#,e. The corresponding phase diagrams a
represented in Figs. 3 and 4.

For w,(11g)/2, the previous results are modified a
follows.

~i! For ec,es and u,1, the trivial conduction state is
convectively unstable up toe5ec , where it bifurcates to
standing waves. These standing waves are stable u
e5es@(11g)/(11g22w)#, where they bifurcate to a
mixed standing-wave–roll state.

~ii ! For ec,es and 1,u,(11g)/2w, the trivial conduc-
tion state is convectively unstable up toe5ec , where it bi-
furcates to standing waves. These standing waves are s
up toe5es@(11g)/(11g22w)#, where they bifurcate to a
mixed standing-wave–roll state. This mixed-mode state
comes unstable ate5es@u/(u21)#, where it bifurcates to
steady rolls.

FIG. 3. Schematic phase diagram associated with the dynam
system ~2.2! with nonvanishing group velocityVÞ0, in the
(e,ec) plane, forg,0, a50.1, b5d50.15, andv5z50 when
w.(11g)/2 andu.1.
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~iii ! For ec,es and (11g)/2w,u, the trivial conduction
state is also convectively unstable up toe5ec , where it
bifurcates to standing waves. These standing waves a
stable up toe5es@(11g)/(11g22w)#, where they bifur-
cate directly to steady rolls, with no intermediate mixed-
mode state.

~iv! For es,ec and u,1, the trivial conduction state is
convectively unstable up toe5es, where it bifurcates to
steady rolls. These rolls are stable up to
e5(ec2ues)/(12u), where they bifurcate to the mixed
standing-wave–rolls state.

~v! For es,ec and 1,u, the trivial conduction state is
convectively unstable up toe5es , where it bifurcates to
steady rolls. These rolls remain stable for increasinge. The
corresponding phase diagrams are represented in Figs. 5 a
6.

When 0,g,1, the only qualitative modification to these
results is that, on increasing the bifurcation parameter, TW
states may appear between the conduction state and stand
waves, as shown, for example, in Fig. 7.

V. THE EFFECT OF NOISE

It may be expected, as in other cases of convective an
absolute instability, that noise could play an important role
here in sustaining spatiotemporal patterns that should othe
wise be convected away by mean flow effects. In the absenc
of stationary instability, spatially distributed noise should
sustain standing or traveling waves, according to the value o
g, in the range 0,e,ec , while these waves are intrinsically
sustained by the dynamics forec,e. On removing the noise
in systems whereg,0 andec8,ec , the system relaxes to the
conducting state for 0,e,ec and to traveling waves for
ec8,e,ec , as shown in@13#.

When the oscillatory instability is close to the stationary
one, leading to possible interactions between steady an
wavy modes, the situation may be more intricate. In particu
lar, the pattern selection obtained in the preceding sectio
should be modified as follows. On the one hand, for
e.ec , the deterministic pattern selection should not be af

al
FIG. 4. Schematic phase diagram associated with the dynamic

system ~2.2! with nonvanishing group velocityVÞ0, in the
(e,ec) plane, forg,0, a50.1, b5d50.15, andv5z50 when
w.(11g)/2 andu,1.
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fected by the presence of noise since all the possible patt
are intrinsically sustained by the dynamics. On the ot
hand, standing or traveling waves should be sustained
spatially distributed noise for 0,e,ec in ramp experiments

FIG. 5. Schematic phase diagram associated with the dynam
system ~2.2! with nonvanishing group velocityVÞ0, in the
(e,ec) plane, forg,0, a50.1, b5d50.15, andv5z50 when
w,(11g)/2 and~a! (11g)/2w,u and ~b! 1,u,(11g)/2w.

FIG. 6. Schematic phase diagram associated with the dynam
system ~2.2! with nonvanishing group velocityVÞ0, in the
(e,ec) plane, forg,0, a50.1, b5d50.15, andv5z50 when
w,(11g)/2 andu,1.
rns
r
by

starting from the trivial conducting state. For quench experi
ments in the rangees,e,ec , a competition may arise be-
tween noise sustained wave patterns and dynamically su
tained roll patterns, which needs to be studied numerically
as shown in Sec. VI. On noise removal, interesting situation
may occur in systems wherees,ec8,ec since the standing
waves should relax to traveling waves forec8,e,ec , to
steady rolls fores,e,ec8 , and to the conducting state for
0,e,es .

VI. NUMERICAL ANALYSIS

The preceding results have been confirmed by numeric
tests performed with a finite difference code for a system o
200 points. The boundary conditions wereA(0)
5R(0)5Bx(0)50 and Ax(200)5R(200)5B(200)50.
For the stochastic cases, noise intensities have been chos
between 1024 and 1022. The following observations are par-
ticularly relevant.

~i! In a system whereg520.5, a50.1, b5d50.15,
v5z50,w50.5,u52, andV51, the following succession
of patterns is obtained in a ramp experiment~e.g., lineR in
Fig. 3! in a deterministic system : uniform steady state up to
e5es ~e.g., point 1 on lineR in Fig. 3! and rolls fores,e
~e.g., points 2 and 3 on lineR in Fig. 3!. In stochastic sys-
tems with spatially distributed noise, standing waves form
for any e.0, but, on noise removal, the system relaxes to
standing waves forec8,e ~e.g., point 3 on lineR in Fig. 3!,
to rolls for es,e,ec8 ~e.g., point 2 on lineR in Fig. 3!, and
to the trivial state fore,es . The corresponding numerical
results are presented in Figs. 8–10.

In Fig. 8,e50.1,es50.15, andec850.1666. . . , such that
e,es,ec8 . In the absence of noise, a snapshot of a wav
transient that is eliminated as the result of the convectiv
nature of the instability of the trivial ground state is repre-
sented in addition to the standing-wave pattern obtained
the presence of a distributed white noise of intensity
I51024. Note the left-right asymmetry in the behavior of
the amplitudes of the underlying traveling waves near th

al

al

FIG. 7. Schematic phase diagram associated with the dynamic
system ~2.2! with nonvanishing group velocityVÞ0, in the
(e,ec) plane, forg.0, a50.1, b5d50.15, andv5z50 when
w.(11g)/2 andu.1.
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6894 55D. WALGRAEF
boundaries, due to the presence of the group velocity.
In Fig. 9, e50.15, es50.05, andec850.1666. . . , such

that es,e,ec8 . Sincees,e, a roll pattern is obtained in the
absence of noise, while in the presence of a Gaussian w
noise of amplitudeI51024, a standing wave pattern is ob
tained, similar to the one of Fig. 8, except that the bound
layer is smaller, as a consequence of the higher value o
bifurcation parameter.

In Fig. 10,e50.2,es50.1, andec850.1666. . . , such that
es,ec8,e, and rolls are still the selected pattern in the a
sence of noise. As in the preceding cases, noise sus
standing waves, which, furthermore, remain stable a
noise removal~with a slight amplitude reduction though!. In
this case, noise not only sustains the wave pattern, but
induces a transition between rolls and standing waves.

~ii ! In systems whereg50.5, a50.1, b5d50.15,
v5z50, w51.5, u52, andV51, ramp experiments~e.g.,

FIG. 9. Results of the numerical resolution of the dynami
system ~2.2! with nonvanishing group velocityV51 for
g520.5, a50.1, b5d50.15, v5z50, w50.5, u52, e50.15,
andm5e2es50.1.

FIG. 8. Results of the numerical resolution of the dynami
system ~2.2! with nonvanishing group velocityV51 for
g520.5, a50.1, b5d50.15, v5z50, w50.5, u52, e50.1,
and m5e2es520.05 ~the transients disappear in the long-tim
limit as the result of the convective instability of the trivial stea
state!.
ite
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line R in Fig. 7! lead to the following succession of pattern
in a deterministic system: uniform steady state up toe5es
and rolls fores,e ~e.g., points 1 and 2 on lineR in Fig. 7!,
while in stochastic systems with spatially distributed noi
standing waves form for any 0,e. However, after noise re
moval, the system relaxes to rolls fores,e,ec ~e.g., point 1
on line R in Fig. 7! and to traveling waves forec,e,ec8
~e.g., point 2 on lineR in Fig. 7!. The corresponding result
are presented in Figs. 11 and 12.

In particular, in Fig. 12,e50.3, es50.1, ec50.25, and
ec850.5, such thates,ec,e,ec8 . Hence rolls are still the
selected pattern in deterministic systems and standing w
may be sustained by distributed white noise. However, si
e is such that the conduction state is absolutely unsta
while traveling waves are only convectively unstable, t
latter are obtained after noise removal. Here also noise
diates a transition from rolls to wave patterns.

I have furthermore tested the effect of group veloc

l

FIG. 10. Results of the numerical resolution of the dynami
system ~2.2! with nonvanishing group velocityV51 for
g520.5, a50.1, b5d50.15, v5z50, w50.5, u52, e50.2,
andm5e2es50.1.

l

FIG. 11. Results of the numerical resolution of the dynami
system~2.2! with nonvanishing group velocityV51 for g50.5,
a50.1, b5d50.15, v5z50, w50.5, u52, e50.2, and
m5e2es50.1.
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variations in deterministic systems whereg520.5,
a50.1,b5d50.15,v5z50, w50.2, andu51.2. Results
are presented in Fig. 13, where it may be seen that, on
creasing the group velocity fromV50.5 to V51.5 @e.g.,
states 1 to 3 on lineR in Fig. 5~b!#, one passes from standin
waves (V50.5 andV51) to rolls (V51.5), while on de-
creasing the group velocity fromV51.5 toV50.5, the sys-
tem remains in the rolls state, confirming the bistability
rolls and waves patterns.

On the other hand, interesting competition phenom
may occur between noise and dynamically sustained st
tures. Although such a competition is difficult to quanti
and requires a systematic numerical analysis, preliminary
sults show that the cross-coupling terms that renormalize
growth rate of the different kinds of modes could play
capital role in dynamical selection processes. For exam
in a perfect codimension-2 situation (es50), numerical re-
sults obtained forg50.5,u52, and small imaginary parts o
the kinetic coefficients strongly differ forw,u/2 and
w.u/2 in the presence of noise. For example, forw50.8,

FIG. 12. Results of the numerical resolution of the dynami
system~2.2! with nonvanishing group velocityV51 for g50.5,
a50.1, b5d50.15, v5z50, w51.5, u52, e50.3, and
m5e2es50.2.

FIG. 13. Results of the numerical resolution of the dynami
system~2.2! with varying group velocities forg520.5, a50.1,
b5d50.15, v5z50, w50.2, u51.2, e50.2, and
m5e2es50.1.
n-
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roll structures emerge for noise intensitiesI51024 ~Fig. 14!
or I5831023 ~Fig. 15!. However, for w51.5, rolls or
waves emerge at random for low noise intensit
(I51024) ~cf. Fig. 14!, while waves always emerge a
higher noise intensities (I5831024) ~cf. Fig. 15!. The nu-
merical results also confirm that the healing length or bou
ary layer extension decreases for increasing noise intens

On the other hand, forw51.5, the stability of rolls ob-
tained in a deterministic quench has been tested versus
tially distributed noise of increasing intensity. In such
experiment, once steady rolls are obtained, all the parame
of the dynamics are kept constant, except the noise inten
which is slowly increased. As shown in Fig. 16, rolls turn

l

l

FIG. 14. Results of the numerical resolution of the dynami
system~2.2! with nonvanishing group velocityV51, in the pres-
ence of spatially distributed noise of low intensity (I5231024),
for e50.2, m5e2es50.2, g50.5, a50.1, b5d50.03,
v5z50.07, u52, and two different values of w (w50.8 and
w51.5).

FIG. 15. Results of the numerical resolution of the dynami
system~2.2! with nonvanishing group velocityV51, in the pres-
ence of spatially distributed noise of higher intens
(I5831023), for e50.2, m5e2es50.2, g50.5, a50.1,
b5d50.03, v5z50.07, u52, and two different values ofw
(w50.8 andw51.5).
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6896 55D. WALGRAEF
out to be stable up to noise intensities of the order
631023, where they bifurcate to wave patterns. These
sults confirm the subtle interplay between dynamic and
chastic effects on pattern selection in convectively unsta
systems.

Finally, it has to be noted that the amplitude of the p
terns are also noise amplified. Effectively, although
moduli uAu2, uBu2, and uRu2 obtained numerically are foun
to agree with the analytical ones in deterministic syste
they are amplified in the presence of noise, as shown in
17. In this case, rolls are sustained by the dynamics and
the absence of noise, the mean value of the modulus^uRu2&
reaches the expected deterministic valuee 5 0.2 in the bulk.
In the presence of spatially distributed noise, this value
creases with noise intensity~for example, for a noise inten
sity of 831023, uRu2 reaches 0.256!, in agreement with the
fact that the linear evolution of the mean square of the
viation of the roll amplitude around its deterministic valu
(r5R2Ae) tends to an asymptotic value proportional to t
noise intensity.

VII. CONCLUSION

The conclusion of the analysis performed in this pape
that the presence of group velocity and mean flows m
strongly affect pattern selection and stability in systems
scribed by coupled Ginzburg-Landau equations, espec

FIG. 16. Results of the numerical resolution of the dynami
system~2.2! with nonvanishing group velocityV51, in the pres-
ence of spatially distributed noise of increasing intensityI )
(e50.2, m5e2es50.2, g50.5, a50.1, b5d50.03,
v5z50.07,u52, andw51.5), showing a noise-induced transitio
from roll to wave patterns.
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when the corresponding Hopf bifurcation is close to anot
instability, which leads, for example, to steady roll patter
as in the case of binary or viscoelastic fluid convection.

When the absolute instability threshold of the trivi
steady state remains below the stationary instabi
(ec,es), the transition to wave patterns is only retarded
the mean flow in deterministic systems, contrary to stoch
tic ones where noise is able to sustain such patterns in
convectively unstable regime. In this case, pattern selec
is thus not qualitatively modified by the neighboring statio
ary instability.

On the contrary, in deterministic systems, whenec.es ,
standing waves are eliminated as an intermediate pattern
tween the conduction state and rolls or mixed modes,
though bistability domains may exist. However, the succ
sion of patterns that would occur in the absence of mean fl
is recovered in the presence of spatially distributed no
although interesting competition phenomena may occur
tween noise and dynamically sustained structures. Prel
nary numerical analysis show that, in this case, pattern se
tion should be very sensitive to the interplay between kine
and stochastic effects on the one hand and experimental
tocols on the other.
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l FIG. 17. Modulus of the roll amplitudeuRu2 obtained numeri-
cally from the dynamical system~2.2! in the presence of spatially
distributed noise of increasing intensity (I ) (e50.2,
m5e2es50.2, g50.5, a50.1, b5d50.03, v5z50.07, u52,
w50.8, andV51).
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